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Abstract—Nonnegative matrix factorization (NMF) is a useful
technique to explore a parts-based representation by decompos-
ing the original data matrix into a few parts-based basis vectors
and encodings with nonnegative constraints. It has been widely
used in image processing and pattern recognition tasks due
to its psychological and physiological interpretation of natural
data whose representation may be parts-based in human brain.
However, the nonnegative constraint for matrix factorization
is generally not sufficient to produce representations that are
robust to local transformations. To overcome this problem, in
this paper, we proposed a topographic NMF (TNMF), which
imposes a topographic constraint on the encoding factor as a reg-
ularizer during matrix factorization. In essence, the topographic
constraint is a two-layered network, which contains the square
nonlinearity in the first layer and the square-root nonlinearity
in the second layer. By pooling together the structure-correlated
features belonging to the same hidden topic, the TNMF will force
the encodings to be organized in a topographical map. Thus, the
feature invariance can be promoted. Some experiments carried
out on three standard datasets validate the effectiveness of our
method in comparison to the state-of-the-art approaches.

Index Terms—Data clustering, dimension reduction, feature
invariance, machine learning, nonnegative matrix factorization.

I. Introduction

DATA representation is a fundamental problem in image
processing and pattern recognition tasks. A good rep-

resentation can typically reveal the latent structure of data,
and further facilitate these tasks in terms of learnability and
computational complexity [1]–[7]. However, in many real
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applications, the input data matrix is generally of very high
dimension, which brings the curse of dimensionality for further
data processing [8]. To solve this problem, matrix factorization
approaches, such as Cholesky decomposition and singular
value decomposition (SVD), have been used to explore two
or more lower dimensional matrices whose product provides
a good approximation for the original data matrix.

Among matrix factorization methods, nonnegative matrix
factorization (NMF) [9] has recently become popular for data
representation owning to its psychological and physiological
interpretation of natural data whose representation may be
parts-based in human brain [10], [11]. Since there is only
additive, not subtractive, combinations, NMF with nonnegative
constraints will obtain a parts-based representation. In essence,
it models data as a linear combination of a set of basis vectors,
and both the combination encodings and the basis vectors are
nonnegative. That is, a face image can be represented by an
additive combination of several versions of mouths, noses,
eyes, and other facial parts. What’s more, in many real-world
applications, the components must be either zero or positive.
For instance, the probability of a given document belonging
to a particular group is nonnegative [12]. In addition, NMF
has shown superior performance to PCA and SVD in face
recognition [13] and document clustering [12].

To obtain the desired characteristics like preserving local
structure, minimizing prediction error etc., many NMF variants
have been developed by modifying the objective function or
constraint conditions of the original NMF. For example, to
consider the geometric structure in the data, several graph
regularized NMF methods [14]–[17] were presented to learn a
new parts-based data representation, which respected the graph
structure. Ding et al. [18] developed a NMF-like algorithm
that yielded nonnegative factors but allowed the data matrix
to have mixed signs. Based on linear programming, a NMF
algorithm with earth mover’s distance was presented in [19].

Liu et al. [20] proposed an A-optimal nonnegative projec-
tion (ANP) method by imposing prediction error constraint
on the encoding factor, which results in a data representation
with the smaller prediction error. Ding et al. [21] presented that
NMF is roughly equivalent to the classical K-means clustering,
and the nonnegative constraint results in sparseness that could
lead to better approximations of the cluster indicators than
direct optimization in the discrete space. Thus, Hoyer [22]
introduced a nonnegative sparse coding algorithm (NNSC),
which explicitly incorporated a sparseness constraint based on
the relationship between the L1 norm and L2 norm. How-
ever, the above extensions may not be sufficient to produce

2168-2267 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



XIAO et al.: TOPOGRAPHIC NMF FOR DATA REPRESENTATION 1763

Fig. 1. Learned 16 basis vectors on the ORL dataset by the NNSC and the
proposed TNMF, respevtively. (a) NNSC. (b) TNMF.

representations that are robust to local transformations, such
as scale and rotational invariance.

In order to learn the invariance of feature representation,
we propose a topographic NMF algorithm (TNMF). Specif-
ically, a topographic constraint is imposed on the encoding
factor as a regularizer for matrix factorization. In essence,
the topographic constraint is a two-layered network, which
contains the square nonlinearity in the first layer and the
square-root nonlinearity in the second layer. Our TNMF is
inspired by reconstruction topographic independent compo-
nent analysis (RICA) [23]–[25], which has demonstrated that
the topographic constraint can be helpful to learn invariance
on input data. In particular, this constraint forces encodings
to be organized in a topographical map by pooling together
structure-correlated features belonging to the same hidden
topic. By pooling over related features, the proposed topo-
graphic architecture can learn complex invariances, e.g., scale
and rotational invariance. Fig. 1 shows the learned 16-basis
vectors on the ORL dataset by NNSC and TNMF, respectively,
and the TNMF can obtain better basis vectors than NNSC by
achieve invariance.

To outline the workflow of our proposed TNMF, the
overview is illustrated in Fig. 2. Specifically, we firstly extract
the raw image features for input images. Then, by pooling
related features together, we can obtain the encodings that
are grouped by hidden topics in a structure-correlated feature
space. Finally, K-means can be applied on new representations
for clustering.

II. Brief Review of NMF

As a matrix factorization algorithm, NMF [9] is utilized
to decompose the original data matrix into a set of bases
and encodings where the basis and encodings are assumed
to be nonnegative. Mathematically, given a data matrix X =
[xij] = [x1, . . . , xn] ∈ Rm×n, NMF aims to find two non-
negative matrices W = [wik] = [W1, ..., Wt] ∈ Rm×t and
S = [sjk] = [s1, . . . , sn]T ∈ Rn×t to approximate the original
matrix as follows:

X ≈ WST

where each column of X is a sample vector. Each data point
xj is approximated by a linear combination of the columns of

W with the coefficient sj . Thus, W and S can be regarded as a
basis set and encodings, respectively. To quantify the quality of
the approximation, a cost function can be constructed by some
measures of distance. One popular measure is the Euclidean
distance (i.e., Frobenius norm)

OF = ||X − WST ||2F . (1)

Although the objective function OF in (1) is not convex with
respect to both W and S together, the following alternating
algorithm [26] converged to a local minimum:

wik ← wik

(XS)ik
(WST S)ik

sjk ← sjk

(XT W)jk
(SWT W)jk

.

(2)

In many real applications, we generally have t � min(m, n).
Thus, NMF is to explore a compressed approximation of the
original data matrix.

III. Topographic NMF

Reconstruction topographic ICA (RICA) [23]–[25] is an
unsupervised learning algorithm that can learn complex in-
variant features from unlabeled image patches by using a
topographic network. This network can be described as a
two-layered network, with the square nonlinearity in the first
layer ((.)2) and the square-root nonlinearity in the second
layer (

√
(.)), respectively. Mathematically, given a data matrix

X = [xij] ∈ Rm×n, the topographic network is performed by
minimizing the following objective function

p =
√

ε + H · ((WT X) � (WT X)) (3)

where W = [W1, ..., Wt] ∈ Rm×t is the basis matrix of the first
layer, H = [hij] ∈ Rt×t is the spatial pooling matrix in the
second layer, � denotes the element-wise multiplication and
ε is a small positive constant. In addition, the pooling matrix
H is hard-coded to represent the topographical structure of the
neurons in the first layer as in [25], generally fixed to uniform
weights, i.e., each element hij is 1.

In fact, WT X could be regarded as encodings corresponding
to data X [24]. Thus, we denote S = (WT X)T where S =
[sjk] ∈ Rn×t for simplicity. Then, we rewrite the function p as

p(S) =
√

ε + H · (S � S)T . (4)

For convenience, we term the p(S) as topographic constraint.
Equation (4) forces encodings to be organized in a topo-
graphical map by pooling together structure-correlated features
belonging to the same hidden topic. More specifically, features
that are near to each other in the topographic map are relatively
strongly dependent in the sense of mutual information [23].

By incorporating the topographic constraint into the original
NMF model, the optimization problem (1) becomes

OF =||X − WST ||2F + λp(S) (5)

where λ is a tradeoff parameter. As pointed out in [23]
and [24], such topographic pooling architecture results in
pooling units that are robust to local transformations of their
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Fig. 2. Method overview for image clustering. (a) Raw image features are extracted and then decomposed into a nonnegative basis set and the corresponding
nonnegative encodings with topographic constraint. Note that topographic constraint is a two-layered network, which contains square nonlinearity in the first
layer and square-root nonlinearity in the second layer. (b) Obtained encodings are grouped in a structure-correlated feature space, which will be beneficial to
clustering tasks.

inputs, and meanwhile promotes feature selectivity by allowing
the reconstruction error and minimizing the encoding energy.
As we known, the combination of robustness and selectivity
is central to feature invariance [27].

To solve the problem (5), the objective function can be
rewritten as

OF = ||X − WST ||2F + λp(S)

= Tr((X − WST )(X − WST )T ) + λp(S)

= Tr(XXT ) + Tr(WST SWT ) − 2Tr(XSWT )

+λp(S) (6)

where Tr(·) denotes the trace of a matrix, and the steps of
derivation employ the matrix property Tr(AB) = Tr(BA) and
Tr(B) = Tr(BT ).

A. Multiplicative Update Rules Formulation

The objective function of TNMF in (6) is not convex with
respect to both variables W and S. Thus, it is unrealistic to
explore the global optima for the objective. In the following,
we describe an alternative update scheme to obtain the local
optima.

Given � = [φik] ∈ Rm×t and � = [ϕjk] ∈ Rn×t , denote φik

and ϕjk as the Lagrange multipliers for constraint wik ≥ 0 and
sjk ≥ 0. Thus, the Lagrange L is as follows:

L = Tr(XXT ) + Tr(WST SWT ) − 2Tr(XSWT )

+ λp(S) + Tr(�WT ) + Tr(�ST ).
(7)

With respect to W and S, the partial derivatives of L are

∂L

∂W
= −2XS + 2WST S + � (8)

∂L

∂S
= −2XT W + 2SWT W + λp′(S) + �. (9)

By utilizing the KKT conditions φikwik = 0 and ϕjksjk = 0,
we obtain the following equations for wik and sjk:

−(XS)ikwik + (WST S)ikwik = 0 (10)

−(XT W)jksjk + (SWT W)jksjk +
1

2
λp′

jk(S)sjk = 0. (11)

Since the update is essentially element-wise, we use pjk(S) to
denote the part of function p(S), which is only relevant to the
element sjk in S. Equations (10) and (11) lead to the following
update rules:

wik ← wik

(XS)ik
(WST S)ik

(12)

sjk ← sjk

(XT W)jk
(SWT W)jk + 1

2λp′
jk(S)

. (13)

Thus, the update rules (12) and (13) can be used to solve the
optimization problem (6). Note that the W and S are randomly
initialized in our experiments.

Regarding the update rules (12) and (13), we have the
following theorem.

Theorem 1: The objective function OF of TNMF in (6) is
nonincreasing under the update rules in (12) and (13). The
objective function is invariant under these updates if and only
if W and S are at a stationary point.

Theorem 1 grantees the convergence under the update rules
of W and S, i.e., (12) and (13), and the final solution will
be a local optimum. The proof of Theorem 1 is given in the
following section.
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B. Proof of Convergence

In order to prove Theorem 1, the cost function OF of TNMF
should be demonstrated to be nonincreasing under the update
steps in (12) and (13). While we have exactly the same update
formula for W in (12) as the original NMF [26]. In addition,
(13) is only related to S. Thus, we just consider that OF is
nonincreasing under the second update step in (13).

To prove the convergence of OF with (13), we employ the
following property of an auxiliary function similar to that used
in the expectation maximization algorithm [28].

Lemma 1: If G is an auxiliary function of F , i.e., G(s, s′) ≥
F (s) and G(s, s) = F (s), then F is nonincreasing under the
update

s(q+1) = arg min
s

G(s, s(q)). (14)

Proof:

F (s(q+1)) ≤ G(s(q+1), s(q)) ≤ G(s(q), s(q)) = F (s(q)).

Notice that F (s(q+1)) = F (s(q)) holds only if s(q) is a local
minimum of G(s, s(q)).

Now, we will show that the update step for S in (13) is
exactly the update in (14) with a proper auxiliary function G.

We rewrote the objective function OF of TNMF in (6) as
follows:

OF = ||X − WST ||2F + λp(S)

=
∑

i,j
(xij −

∑
k
wiksjk)

2
+

λ
∑

j,l

√
ε +

∑
k
hlks

2
jk (15)

where 1 ≤ l ≤ t. In addition, we use Fjk to denote the part of
OF , which is only relevant to the element sjk in S. Thus, we
have

F ′
jk =

(
∂OF

∂S

)
jk

= (−2XT W + 2SWT W)jk + λp′
jk(S) (16)

and

F ′′
jk = (2WT W)kk + λp′′

jk(S). (17)

Lemma 2: Function

G(s, s(q)
jk ) = Fjk(s(q)

jk ) + F ′
jk(s(q)

jk )(s − s
(q)
jk )

+
(SWT W)jk + 1

2λp′
jk(S)

s
(q)
jk

(s − s
(q)
jk )2 (18)

is an auxiliary function for Fjk, the part of OF which is only
relevant to sjk.

Proof: Since G(s, s) = Fjk(s) is obvious, we need only show
that G(s, s(q)

jk ) ≥ Fjk(s). To do this, we compare the Taylor
series expansion of Fjk(s)

Fjk(s) = Fjk(s(q)
jk ) + F ′

jk(s(q)
jk )(s − s

(q)
jk )

+((WT W)kk +
1

2
λp′′

jk(S))(s − s
(q)
jk )2 (19)

with (18) to find that G(s, s(q)
jk ) ≥ Fjk(s) is equivalent to

(SWT W)jk + 1
2λp′

jk(S)

s
(q)
jk

≥ (WT W)kk +
1

2
λp′′

jk(S). (20)

It is easy to check that

(SWT W)jk =
∑

l
s

(q)
jl (WT W)lk ≥ s

(q)
jk (WT W)kk.

In addition, we have p′
jk and p′′

jk as follows:

p′
jk(S) =

∑
l

hlks
(q)
jk√

ε +
∑

k hlk(s(q)
jk )

2
(21)

p′′
jk(S) =

∑
l
(

hlk√
ε +

∑
k hlk(s(q)

jk )
2

− (hlks
(q)
jk )

2

(ε +
∑

k hlk(s(q)
jk )

2
)
3/2 ). (22)

Similarly, it is easy to verify that 1
2λp′

jk(S) ≥ 1
2λp′′

jk(S) · s(q)
jk .

Therefore, (20) holds and we have G(s, s(q)
jk ) ≥ Fjk(s). Now,

we can prove the convergence of Theorem 1.
Proof of Theorem 1 Replacing G(s, s(q)

jk ) in (14) by (18) leads
to the update rule

s
(q+1)
jk = s

(q)
jk − s

(q)
jk

F ′
jk(s(q)

jk )

2(SWT W)jk + λp′
jk(S)

= s
(q)
jk

(XT W)jk
(SWT W)jk + 1

2λp′
jk(S)

.

According to Lemma 2, Fjk is nonincreasing under this update
rule.

C. Connection to RICA

The optimization problem in RICA [23], [24] is defined as

OF = ||X − WWT X||2F + λp(WT X). (23)

Similar to TNMF, RICA also attempts to find a matrix
factorization, and simultaneously forces the pooling features
to group similar features together to achieve invariance. Ac-
cording to (5) and (23), it is clear there is a close connection
between the proposed TNMF and RICA. However, TNMF has
three major differences from RICA.

1) As an independent competent analysis method, the
prewhitening on the input data in RICA should be
carried out to satisfy the orthogonality constraint, i.e.,
WWT = I. But for TNMF, the explicit encoding as
S = (WT X)T is employed without the requirement of
data prewhitening.

2) Nonnegative constraints are imposed on both basis ma-
trix W and encoding matrix S in TNMF, which leads
to a parts-based representation with only additive, not
subtractive, combinations.

3) The goal of TNMF is to obtain a low-rank approximation
(t � m) to the input data matrix with each column
of encoding matrix S corresponding to a hidden topic,
which is roughly equivalent to the classical K-means.
However, RICA as in sparse coding [29] tries to learn
highly over-complete features (t � m).
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Fig. 3. Clustering results on ORL dataset. (a) Accuracy. (b) NMI.

TABLE I

Clustering Results on ORL Dataset

IV. Experiments

In this section, the datasets and evaluation metrics are first
introduced. Then, we evaluate the performance of the proposed
TNMF model for image clustering over some previous state-
of-the-art algorithms. Once the clustering results are obtained,
we further analyze their statistical significance. Finally, we
analyze the computational complexity of TNMF, and experi-
mentally show the speed of its convergence. All experiments
were conducted on a windows machine with Intel Core2 Duo
3 GHz CPU(E8400) and 3 GB RAM.

A. Datasets

The performance of TNMF is evaluated on three public
image datasets: AT&T ORL,1 Caltech 101 [30], and Yale.2

1) The ORL dataset contains ten different images in each
of 40 distinct subjects, thus 400 images in total. For

1http://www.uk.research.att.com/facedatabase.html
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html

some subjects, the images were taken at different times,
varying the lighting, facial expressions (open/closed
eyes, smiling/not smiling), and facial details (glasses/no
glasses). Each image is 32×32 pixels with 256 gray
levels per pixel.

2) Caltech 101 dataset contains 9144 images, which belong
to 101 object classes and 1 background class including
animals, vehicles, etc. Following the same experiment
setup in ANP [20], we choose the ten largest categories
as our experimental data which consists of 3044 im-
ages in total, and extract the SIFT descriptors [31]
to form a 500-D frequency histogram [32] for each
image.

3) Yale Face dataset consists of 165 grayscale images
with 15 subjects. Each subject has 11 images, which
are different facial expression or configuration: center-
light, w/glasses, happy, left-light, w/no glasses, nor-
mal, right-light, sad, sleepy, surprised, and wink. Each
image is 32×32 pixels with 256 gray levels per
pixel.
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TABLE II

Clustering Results on Caltech 101 Dataset

Fig. 4. Clustering results on the Caltech 101 dataset. (a) Accuracy. (b) NMI.

B. Evaluation Metrics

The clustering results are usually evaluated by comparing
the cluster label of each sample with its label provided by
the database. Similar to [20], two standard clustering metrics,
the accuracy (AC) and normalized mutual information metric
(NMI), are utilized to measure the clustering performance.
Given a dataset with n images, for each image xi, denote by
ei and ri the cluster label and the ground truth provided by the
database, respectively. The metric AC is defined as follows:

AC =

n∑
i=1

δ(ri, map(ei))

n
(24)

where δ(x, y) is the delta function, which equals one if
x = y and equals zero otherwise, and map(ei) is the mapping
function that maps each cluster label ei to the best label from
the database. The best mapping can be found by employing
the Kuhn–Munkres algorithm [33].

Let C denote the set of clusters obtained from the ground
truth and C̃ obtained from our algorithm. Their mutual infor-
mation metric MI(C, C̃) is defined as follows:

MI(C, C̃) =
∑

ci∈C,c̃j∈C̃

p(ci, c̃j) · log
p(ci, c̃j)

p(ci) · p(c̃j)
(25)

where p(ci) and p(c̃j) are the probabilities that an image
arbitrarily selected from the dataset belongs to the clusters
ci and c̃j , respectively, and p(ci, c̃j) is the joint probability
that the arbitrarily selected image belongs to the clusters ci,
as well as c̃j at the same time. In our experiments, we use the
normalized mutual information NMI as follows:

NMI(C, C̃) =
MI(C, C̃)

max(H(C), H(C̃))
(26)

where H(C) and H(C̃) are the entropies of C and C̃, respec-
tively. Note that NMI(C, C̃) ranges from 0 to 1. NMI = 1 if
the two sets of clusters are identical, and NMI = 0 if the two
sets are independent.
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Fig. 5. Clustering results on the Yale dataset. (a) Accuracy. (b) NMI.

TABLE III

Clustering Results on Yale Dataset

C. Clustering Results

To evaluate the clustering performance, we compare our
TNMF with other state-of-the-art algorithms on the above two
datasets. The evaluated algorithms are listed below:

1) traditional K-means on original data (Kmeans);.
2) nonnegative matrix factorization (NMF) [9];
3) principle component analysis (PCA);
4) graph regularized NMF (GNMF) [15];
5) nonnegative spectral clustering with discriminative reg-

ularization(NSDR) [4];
6) nonnegative sparse coding (NNSC) [22];
7) reconstruction ICA (RICA) [24];
8) A-optimal nonnegative projection (ANP) [20].

Following the same setting in ANP, N categories will be
randomly picked up from the dataset with fixing cluster num-
ber N. All of these images are mixed into the collection X for
clustering. To obtain the encodings, we set the dimensionality

Fig. 6. Graphical representation of Nemenyi test on ORL data (CD=4.01).

of the new space to be the same as the number of clusters N.
Then, K-means is applied on new representations for cluster-
ing. The above process will be repeated ten times, and both
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Fig. 7. Performance of TNMF versus parameter λ. (a) Accuracy. (b) NMI.

the average and variance of the performance are given as the
final experiment result.

Fig. 3 shows the effectiveness of the proposed TNMF on
ORL dataset. The detailed results are described in Table I.
Our results are better than the best of the other algorithms,
i.e., 1.46% improvement in accuracy averagely and 1.94% im-
provement in normalized mutual information averagely. Fig. 4
and Table II show the clustering results on the Caltech 101,
respectively. Specifically, TNMF achieves 2.03% improvement
in accuracy averagely and 0.74% improvement in normalized
mutual information than the best of the other algorithms.
Especially, TNMF outperforms all the other algorithms all the
way in terms of clustering accuracy. In addition, Fig. 5 and
Table III demonstrate the clustering results on the Yale dataset,
respectively, and TNMF outperforms the other methods in
most cases, i.e., 2.04% improvement in accuracy averagely
and 3.05% improvement in normalized mutual information
averagely.

D. Statistical Analysis

To evaluate the performance of our proposed TNMF, we
use the Friedman test and Nemenyi test recommended in [34].
First, the average ranks of classifiers over all data are com-
puted, and Friedman test is conducted to verify the null-
hypothesis that all classifiers are equivalent in the respect
of clustering performance. If the null hypothesis is rejected,
then the Nemenyi test will proceed. In addition, if the average
ranks of two classifiers differ by at least the critical difference
(CD), then it can be concluded that their performances are
significantly different.

In the Friedman test, we set the significant level α = 0.05.
Based on the accuracies of all methods over each cluster
number on ORL dataset, we obtain the p-value = 6.14 × e−23

by performing the Friedman test. Since p-value is lower than
α, we can reject the null hypothesis and Nemenyi test can
proceed. As shown in Fig. 6 for CD diagram, TNMF achieves
significant improvement over NMF, PCA, and Kmeans on
ORL data. In addition, TNMF is much more competitive with
some state-of-the-arts methods, NNSC, ANP, NSDR, GNMF,
and RICA.

TABLE IV

Running Time (in Seconds)

E. Tuning Parameter Selection

In the experiments, we experimentally set λ = 10 for the
ORL data, λ = 100 for Caltech data, and λ = 0.01 for
Yale data. Fig. 7 shows how the performance of TNMF varies
with the parameter λ on ORL dataset for cluster number N=10.
It is easy to find that the TNMF is stable with respect to the
parameter λ.

F. Computational Complexity Analysis and Convergence
Study

In this experiment, we test the speed performance of the
original NMF, RICA, and our TNMF, and meanwhile in-
vestigate the effect over the cluster number N as 5, 10,
15, and 20. In addition, all the algorithms are terminated
when changes of the parameter vector drop below 10−6. We
use the RICA implementation provided in [24]. Table IV
shows the running times for NMF, RICA, and our TNMF.
The results show that our method is much faster than the
RICA and slightly slower than NMF. However, as shown
in Section IV-C, TNMF achieves much better clustering
performance than NMF. In addition, the overall cost of
TNMF is same as the original NMF for each update step
(i.e. O(mnt)).

In Section III-B, we have theoretically proved the con-
vergence of TNMF, and now we experimentally show the
speed of convergence of TNMF in comparison to the NMF
in Fig. 8. Note that we set the cluster number N = 10. Fig. 8
demonstrates that TNMF converges as fast as NMF within
400 iterations.
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Fig. 8. Convergence of NMF and TNMF on ORL and Caltech 101 datasets. (a) ORL-NMF. (b) ORL-TNMF. (c) Caltech-NMF. (d) Caltech-TNMF.

V. Conclusion

In this paper, we propose a topographic NMF algorithm for
data clustering, called TNMF. TNMF explicitly incorporates a
topographic constraint to force encodings to be organized in
a topographical map by pooling structure-correlated features
together to achieve invariance. The experiments conducted on
standardized datasets have demonstrated the effectiveness of
the proposed method.
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